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Comparison of interatomic potentials for UO2.
Part I: Static calculations
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Abstract

An improved knowledge of nuclear fuel can be gained from a better description of atomic-scale processes such as point
defects behaviour under irradiation. In this perspective the different techniques involving interatomic potentials can play a
major role as they permit to simulate such mechanisms at the atomic scale. In this article we will assess the range of appli-
cability of the available interatomic potentials for UO2 by static calculations. Lattice properties have been envisaged,
together with defect properties: the formation and activation energies of vacancies and interstitials, the binding energy
of small clusters of these defects and the volume change associated with them.
� 2007 Elsevier B.V. All rights reserved.

PACS: 31.15.Qg; 34.20.Cf; 61.72.�y; 61.72.Ji; 66.30.Hs; 71.15.Pd; 83.10.Rp
1. Introduction

Fuel rod behaviour under irradiation is affected
by many phenomena, and it is sometimes very diffi-
cult to isolate each process by experimental means.
From a technical point of view, this is not limiting
for UO2, since more than 40 years of experiments
have permitted to create useful correlation curves.
The extension of this knowledge to new types of
fuels, for which less experiments have been con-
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ducted, requires an improved multi-scale modelling
of these processes based on the understanding of
elementary processes at the atomic scale.

A significant step forward in their understanding
may be expected thanks to two techniques based on
interatomic potentials describing the interactions of
atoms. Energy minimisation allows to assess the
stability of specific configurations after lattice relax-
ation. Molecular dynamics (MD) allows to deter-
mine the time-evolution of a set of interacting
atoms. It is limited in system size (up to a few mil-
lion atoms) and time (up to a few nanoseconds).
Energy minimisation can be achieved in a few itera-
tions with hessian-based algorithms for which the
memory needs increase very rapidly with system
size. A system containing of the order of 1000 atoms
.
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is generally a good compromise for isolated defects.
Much larger systems can be considered if gradient-
based techniques are used, but with a larger number
of iterations.

A number of interatomic potentials describing
the interactions in UO2 have been developed over
the past decades. Several authors have fitted an
interatomic potentials on different experimental
data. The aim of this article is to make a broad
comparison of these potentials, helping this way to
appreciate their range of applicability. Lattice prop-
erties (lattice parameter, elastic constants, dielectric
constants, phonon frequencies at C point) and
defect properties (energy, stability, migration and
swelling) estimated with these potentials will be
compared to experiment and ab initio predictions.
MD simulations of dynamical properties will be
reported in a subsequent article.

Section 2 introduces the different descriptions of
interatomic potentials (Section 2.1). It is followed
by a review on pair potentials for UO2 (Section
2.2). Section 2.3 provides an overview of the differ-
ent calculation techniques used and how to compare
them to experimental results. A discussion of the
results is proposed in Section 3. Results are synthe-
sized in Section 4.

2. Methodology

2.1. Pair potentials survey

Two main categories of interatomic potentials
have been developed in the past. In the first one,
polarization effects are taken into account by means
of the shell–core model of Dick and Overhauser [1].
Ions are described as a massless charged shell bound
to a massive core by a spring. Note that the inter-
atomic potential acts between the shells, except for
the Coulomb interaction that acts between both
shells and cores. In the second model, the rigid ion
model, ions are considered as massive point charges.
MD simulations with this more simplified model are
faster because the shell motion (which is more rapid
due to the zero mass of shells) is absent.

The usual form of the pair potential in oxides
consists into the addition of a Buckingham form
to the Coulomb potential

V ijðrÞ ¼
qiqje
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where r is the distance between atoms i and j.
In order to avoid the unphysical attractive forces
at very short distance, a ‘Buckingham-4 ranges’ has
been proposed, defined by intervals

V ijðrÞ¼
qiqje
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The two splines are such that the potential and its
two first derivatives are continuous and that rmin is
the potential minimum.

Another form of potential for oxides has been
developed in order to model covalent bounds
between anions and cations. It consists of the addi-
tion of a Morse potential (describing the covalent
bound) to the Buckingham potential acting between
anions and cations. Anion–anion and cation–cation
interactions remain of the Buckingham form.
Charges of ions are generally a fraction of the for-
mal charges with such a model. The potential is then
expressed by

V ijðrÞ ¼
qiqje
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All short-range potentials were used in this work
with a cut-off at 10.4 Å while the Coulomb interac-
tions were treated with the classical Ewald summa-
tion technique.

2.2. Pair potentials development

This section will present, as much as possible in a
chronological way, the interatomic potentials devel-
oped for UO2, and their use in other work. We will
refer to the potentials by the name of their first
author and a digit if they created more than one,
e.g. Catlow1 and Catlow2, except for the potentials
created by Lewis and Catlow (see further) that are
widely known as ‘Lewis_a, b or c’.

The first article where an interatomic potential
was established for UO2 was written in 1962 by
Benson et al. [2]; it was based on a rigid ion descrip-
tion, and fitted to lattice parameter and compress-
ibility data. This potential was used to calculate
the cohesive energy of the crystal. A few years later
a second article appeared, written by Dolling et al.
[3]. Four sets of potentials were established, based
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on a fitting to dispersion curves. One of these was
based on a rigid ion description, the other ones on
the shell–core model of Dick and Overhauser [1].
Unfortunately the authors of these two articles did
not mention the values of the different parameters
of the potentials.

The first available sets of parameters for the UO2

systems, developed by Tharmalingam [4], were fitted
on elastic properties, and used in order to calculate
point defect energies. The calculations were done
using the point polarizable ion model, which accord-
ing to Catlow and Norgett [5], can show instabilities
in the calculation of dipoles interaction. Note that
for the second set (Tharmalingam2), the author
added to the usual Buckingham form a �D/r8 term.

In the 70s Catlow started a series of articles on
UO2 [5–7] where different interatomic potentials
were developed. In Ref. [6] two potentials for
UO2, based on a shell–core description, were devel-
oped by fitting to elastic and dielectric constants and
lattice parameter. They were designed to calculate
formation energies of point defects. One of these
two potentials, Catlow1, was also used by Sugisaki
[8] in order to calculate the enthalpy of solution of
MgO in UO2, and both of them by Abramowski
et al. [9] in order to study the grain growth of UO2.

Based on this work a rigid ion potential has been
developed by Walker and Catlow [10], adjusting the
U–O potential parameters in order to predict
correctly the static dielectric constant and lattice
parameter. A rigid ion potential was needed in order
to make molecular dynamics simulations (much less
time consuming than shell–core potentials) of prop-
erties of UO2 at high temperatures (transition to
superionic phase). Walker’s potential was more
recently used by Motoyama et al. [11] for the calcu-
lation of the thermal conductivity of UO2. A few
years later, in 1985, Lewis and Catlow [12] devel-
oped their well-known libraries of potentials
adapted for several metal oxides, among which
UO2. For each library the same O–O interaction is
kept, allowing to simulate alloys of these oxides.
Three sets can be found in their paper concerning
uranium dioxide, the first one is a rigid ion poten-
tial, the two others being shell–core potentials.

The same year Jackson et al. [13] modified the
Catlow1 potential [6], using a polynomial interpola-
tion at intermediate separation (Eq. (2)), in order to
correct the unphysical behaviour of the Bucking-
ham-type potential at very low separations – the
potential becomes attractive at very low distance
because of the 1/r6 term. These authors also deve-
loped a second potential (referred as Jackson2) that
takes dynamical effects into account (the thermal
expansion). The aim of their study was to calculate
defect formation energies, substitution energies (for
U2+, U3+, U5+, U6+, Ce3+, Ce4+, Pu2+, Pu3+, Pu4+,
Pu5+, and Pu6+) and activation energies in UO2,
using the quasi-harmonic approximation for tem-
peratures above 0 K. They also determined phonon
dispersion curves. The second potential was used in
other articles of Jackson: Jackson et al. [14] where
defect formation energies were calculated; and Jack-
son and Catlow [15,16] where the solution energy of
Xe was calculated.

Lindan and Gillan [17] used the Jackson2 poten-
tial to make the first shell–core MD simulations of
UO2 in 1994. They studied oxygen diffusion at high
temperature and the apparition of the superionic
phase. These results were in good agreement with
previous rigid ion model simulations. Jackson2
potential was subsequently used by Nicoll et al.
[18,19] to study respectively Xe and Mo solution
in UO2; and by Abramowski et al. [9] for the grain
growth of UO2.

A series of rigid ion potential is based on Jack-
son2, again in order to make more rapid molecular
dynamics simulations. Sindzingre and Gillan [20]
modified the O–U potential such that the lattice
parameter and oxygen Frenkel pair energy remains
the same as for Jackson2, keeping the original O–O
interaction. They simulated by MD oxygen diffu-
sion at high temperatures, lattice thermal expan-
sion, specific heat and the melting point. This
potential was then used by Gillan [21] to study the
diffusion coefficient at different temperatures; and
by Lindan and Gillan [22] to study thermal conduc-
tivity, also using MD. Sindzingre potential showed
an instability (softening of one Raman mode) and
was for that reason slightly modified by Karakasidis
and Lindan [23]. The fitting kept the oxygen Frenkel
pair formation energy value calculated with the
Jackson2 potential. Karakasidis and Lindan used
MD in order to simulate the superionic transition.

A new modification of this potential was made by
Morelon et al. [24], in order to reproduce more
accurately defect properties. The fitting was for this
reason based on defect energies and lattice parame-
ter. For this potential, ions have no longer their
formal charges (i.e. not +4 and �2 for respectively
U and O ions). They calculated various defect for-
mation and activation energies. This potential was
developed in order to simulate displacement cas-
cades in UO2 (see [25]).
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In parallel to this, Grimes and Catlow produced
a consistent set of interatomic potential (shell–core
model) for UO2 and several impurities. The fitting
of the potentials was based on electron-gas calcula-
tions. In a set of articles [26,27] the solution energies
of Xe, I, Ba, Kr, Rb, Br were studied. In a subse-
quent paper [28], migration and solution energies
of Br, Kr, Rb, Sr, Y, Te, I, Xe, Cs, Ba, La, Ce are
calculated. He behaviour was studied by Grimes
et al. in [29]. The Grimes potential has also been
used by Ball and Grimes [30] in order to study solu-
tion and activation energies of Xe in UO2; by
Grimes et al. [31] for I and Cs; by Grimes in [32]
for Br, Kr, Rb, Sr, Y, Zr, Te, I, Xe, Cs, Ba, La,
Ce; by Abramowski et al. [9] for the study of grain
growth; and by Busker et al. [33,34] for respectively
the diffusion of I and Cs in UO2 and the solution
and diffusion of Ru in UO2.

In their article Abramowski et al. [9] also give the
parameterisation for another set of potentials, cre-
ated by Busker. It is referred as a private communi-
cation. We decided to use this potential in this
study, even if no original article written by Busker
about this potential could be found in the literature.

Recently a Japanese group developed a series of
rigid ion potentials for nuclear fuels, a.o. UO2

[35], (U,Pu)O2 [36], minor actinides oxides [37,38],
and also for several nitrides [39–41]. The fitting of
these potentials was based on lattice parameter
and bulk modulus evolutions with temperature;
using non-formal charges. Note that this Japanese
group added a Morse-type potential to the Bucking-
ham-type potential. The same O–O potential is used
for every system, and this formalism allows to con-
sider mixing of compounds (in order to simulate e.g.
MOX fuel). Yamada’s fitting has been subsequently
improved by Basak et al. [42] using isothermal com-
pressibility data in order to reproduce more accu-
rately the lattice expansion.

In 2005 Arima et al. [43] published two sets of
rigid ion potentials, having the usual Buckingham
form, formal charges for the first set, the other set
having non-formal charges. The formalism used
was the same as for the potential developed by the
Japanese group of Yamada, each ion having its
own parameters (see Eq. (3)). It is thus possible to
use the parameters of UO2 and of PuO2 to obtain
the U–Pu interaction and thus to simulate
(U,Pu)O2.

Meis and Gale [44] studied lattice diffusion of U
and Pu in zirconium orthosilicate (ZrSiO4). They
developed a set of interatomic potentials (shell–core
model) for zircon, UO2 and PuO2 and then trans-
ferred the obtained U–O and Pu–O potentials to
zircon. Their fitting was based on lattice parameter,
elastic tensor elements, static and dielectric con-
stants as well as piezoelectric constants, constrain-
ing oxygen’s shell and core charges to be identical
in all three ionic structures (in order to transfer
the potentials from UO2 and PuO2 to ZrSiO4).
Finally the last potential (shell–core model) used
in our study was developed by Meis and Chartier
[45]. The fitting was based on crystallographic, elas-
tic and dielectric properties of UO2. Then the set of
potentials was used to calculate thermodynamic
properties, Frenkel pair formation energies and
migration energies. If these properties were not well
reproduced, a new parameterisation was established
changing the initial values of the fitted parameters.

The parameterisation of the potentials can be
found in Tables 1–3 for respectively the shell–core
model potentials, the rigid ion potentials with Buck-
ingham form and the rigid ion potentials with Buck-
ingham + Morse form. All parameters have been
converted using eV and Å units for clarity.

2.3. Calculation techniques and comparison

to experimental data

2.3.1. Energy minimisation strategies
The calculations in this article involve two energy

minimisation strategies. The first explores global
energy maps using periodic boundary conditions
(PBC). The second, due to Mott and Littleton priv-
ileges a local approach [46]. Both methods which are
implemented in the GULP code [47], were used in
this study. These energy minimisation techniques
search stationary points at which gradients are zero.
If the number of imaginary eigen-values of the hes-
sian is zero, then a local minimum has been found.
Stationary points with imaginary eigen-values cor-
respond to energy saddle point. They have also been
computed, in order to determine migration energies
of atoms. In the periodic boundary conditions
approach, energy minima are searched using the
BFGS (Broyden, Fletcher, Goldfarb and Shanno)
algorithm implemented in GULP [47].

For systems containing one or more defects,
because of the periodic boundary conditions, atoms
interact not only with the original defect(s) but also
with its (their) images generated by these boundary
conditions. In order to make this undesirable effect
negligeable, the size of the simulation box must be
large enough. The BFGS algorithm may then



Table 1
Parameters of the shell–core potentials of the form of Eq. (1) or (2)

Parameters Units Potentials

Busker [9] Catlow1 [6] Catlow2 [6] Grimes [28] Jackson1a [14] Jackson2 [14] Lewis_b [12] Lewis_c [12] Meis1 [44] Meis2 [45]

Charges

O shell e �2.08 �4.4 �3.06 �4.4 �4.4 �4.4 �2.7 �3 �2.86 3.18627
O core e 0.08 2.4 1.14 2.4 2.4 2.4 0.7 1 0.86 1.18627
O spring eV/Å2 6.3 292.98 80.21 296.8 292.98 296.2 51.6 49.5 52.308 70.824
U shell e �0.1 6.54 7.94 6.54 6.54 6.54 6.44 5.35 / �2.84
U core e 4.1 �2.54 �4.1 �2.54 �2.54 �2.54 �2.44 �1.35 4 6.84
U spring eV/Å2 160 103.38 210.02 98.24 103.38 94.24 129 109.7 / 171.556

Parameters: O–O interactions

A eV 9547.96 22764.3 22764.3 108 20378 11272.6 22764.3 22764.3 22764.3 20908.03
q Å 0.2192 0.149 0.149 0.38 0.12537 0.1363 0.149 0.149 0.149 0.1296
C eV Å6 32 112.2 20.37 56.06 114 134 112.2 112.2 31.984 229.04

Spline

r1 Å 1.159 1.2 1.17
rmin Å 1.65 2.1 1.62
r2 Å 2.7299 2.6 2.84

Parameters: O–U interactions

A eV 1761.775 1217.8 1297.44 2494.2 1217.8 1518.92 1055.5 1014.3 841 844.41
q Å 0.35642 0.3871 0.3747 0.34123 0.3871 0.38208 0.3949 0.3976 0.4169 0.425243
C eV Å6 40.16 65.41

Parameters: U–U interactions

A eV 18600
q Å 0.27468
C eV Å6 32.64

The short-range potentials act between shells only.
a In the original paper the splines of Jackson1 and Jackson2 potentials are of the 7th order between rmin and r2.
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Table 2
Parameters of the rigid ion potentials of the form of Eq. (1) or (2)

Parameters Units Potentials

Arima1 [43] Karakasidis [23] Lewis_a [12] Morelon [24] Sindzingre [20] Tharmalingam1 [4] Tharmalingam2a [4] Walker [10]

O charge e �2 �2 �2 �1.61363 �2 �2 �2 �2
U charge e 4 4 4 3.227252 4 4 4 4

Parameters: O–O interactions

A eV 22517.53b 11272.6 22764.3 11272.6 11272.6 �93.3 36.1 50259.34
q Å 0.149 0.1363 0.149 0.1363 0.1363 0.398 0.382 0.15285
C eV Å6 27.59 134 112.2 134 134 27 72.65339

Spline

r1 Å 1.2 1.2 1.2
rmin Å 2.1 2.1 2.1
r2 Å 2.6 2.6 2.6

Parameters: O–U interactions

A eV 1133.05 895.5898 1055 566.498 869.98 959.6 1371 873.3274
q Å 0.386 0.42512 0.3949 0.42056 0.427 0.398 0.382 0.40369
C eV Å6 �65.4 �65.4 53

a For Tharmalingam2 potential; supplementary terms are added to the Buckingham form: a � D/r8 term. The value of D (in eV Å8) is 19 for O–O interaction; 159 for O–U; and 1721
for U–U. The parameter C has also a non-zero value for the U–U interaction: 231 eV Å6.

b We think that this parameter was originally taken from Catlow’s work (22764.3 eV) but slightly modified by conversion factors to kJ/mol and inversely.
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Table 3
Parameters of the rigid ion potentials of the form of Eq. (3)

Parameters Units Potentials

Arima2 [43] Basak [42] Yamada [35]

f0 eV/Å 0.043405 0.04222 0.043405

Parameters for O

Charge e �1.35 �1.2 �1.2
a Å 1.847 1.91 1.926
b Å 0.166 0.163511 0.16
c eV1/2/Å3 4.1668 1.98762 2.03657

Parameters for U

Charge e 2.7 2.4 2.4
a Å 1.318 1.63 1.659
b Å 0.036 0.16351 0.16
c eV1/2/Å3 0 0 0

Parameters for O–U interaction

Dij eV 0.57745 0.78129
r* Å 2.369 2.369
bij 1/Å 1.65 1.25
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become too time-consuming and a conjugate gradi-
ent algorithm is preferable. The latter approach is
used in this article in order to estimate the swelling
due to defects, because energy minimisation with
PBC allows to work at constant pressure. Conver-
gence of energy was reached for a system consisting
of 4 · 4 · 4 conventional unit cells (768 atoms).

According to the Mott–Littleton approach [46],
the environment around the defect is divided in
three regions by two concentric spheres. Inside the
smallest one, ions are strongly affected by the pres-
ence of the defect and interactions are calculated
explicitly with a full relaxation of the lattice. In
the intermediate region, atoms are weakly per-
turbed, leading to an harmonic relaxation. The out-
side region is treated as a dielectric medium. Both
energy minima – corresponding to stable defect con-
figurations – and energy saddle point – correspond-
ing to the migration of atoms – can be considered
with this approach. Saddle points are calculated
using the RFO (Rational Function Optimisation)
[48] procedure. Since the migration energy is the dif-
ference between the energy at a saddle point and at
the minimum, the Mott–Littleton approach is very
attractive.

Both methods predicts the same formation
energy if the system size is sufficient, but the
Mott–Littleton method seems to converge faster
(i.e. with smaller systems) and offers the best com-
promise on computer time. The radii of the spheres
used in this article were of 9 and 20 Å.
2.3.2. Elastic properties

Once the minimum energy configuration has
been found, different crystallographic, elastic and
dielectric properties of the crystal can be estimated
at 0 K from the second derivatives of the potential.
The experimental elastic properties, however, are
obtained at room temperature and defect energies
at even higher temperatures. The comparison is nev-
ertheless valid insofar both defect energies and elas-
tic data are not strongly varying with temperature in
the range of interest. The 0 K lattice parameter,
however, has to be estimated by extrapolation to
0 K. An illustration of the UO2 lattice can be found
in Fig. 1.

Experimental elastic data used for the compari-
son can be found in: [49–51] (lattice parameter –
a0, thermal expansion), [51–58] (elastic constants –
C11, C12, C44, bulk modulus – B, Young modulus
– E, Poisson’s ratio – m); dielectric data from:
[6,59] (static dielectric constant – e0, high frequency
dielectric constant – e1); phonon frequencies at C
point from: [3].

2.3.3. Defect formation energies

As previously mentioned, defect energies were
estimated using the Mott–Littleton approach. Exper-
imental values of defect formation energies can be
found in: [50,52,53,60–64] (oxygen Frenkel pair –
OFP), [61,65,66] (uranium Frenkel pair – UFP).
The energies obtained in this work can also be com-
pared to ab initio calculations (see e.g. [67–72]).



Fig. 1. UO2 lattice. Dark spheres are U atoms. O atoms are
situated at each gray cube edge, but are only shown as white
spheres in the central zone for clarity reasons.

168 K. Govers et al. / Journal of Nuclear Materials 366 (2007) 161–177
Care has to be taken for defects that does not
conserve the stoichiometry of the system, such as
vacancies or interstitials. In that case their forma-
tion energy (the energy appearing in the Boltzmann
expression of their concentration as a function of
the temperature) is not simply equal to the energy
difference between the ‘undefective’ system and
the ‘defective’ system (called Grand canonical
energy parameter in [73], Egc). Mayer and Fahnle
[73] have demonstrated that in the case of an
ordered alloy where the dominant defects are
vacancies and antisites, the vacancy formation
energy could be expressed as Ef = Egc + l0, where
l0 is the chemical potential of the species. Similarly
the relaxation volume of these defects has to be cor-
rected. The case of uranium dioxide would be still
more difficult to envisage, as interstitial defects
are situated on a separate sublattice than U and
O ones.

The comparison of semi-empirical estimation of
Egc to ab initio data is also not straightforward
because the reference energies are different in the
two methods when considering charged defects –
oxygen vacancy (VO), uranium vacancy (VU), oxygen
interstitial (OI) or uranium interstitial (UI) – e.g. the
formation energy of an oxygen vacancy:

• with ab initio, the atom at ‘infinity’ can be chosen
as atomic O or 1

2
O2;
• with the semi-empirical potentials (used in MD) a
charged ion is brought to infinity. One point to
note is that O2� is unbound in vacuum, which
implies that the difference between the two refer-
entials has to be estimated. An estimations of this
value has been made [8,67], but its extension to
non-formal charges e.g. O1.2� requires an
hypothesis on the evolution of atomic energy
with non-integer charges.

This problem does not occur with intrinsic
defects (which are neutral): Frenkel pairs (FP) or
Schottky defects (Sch in Table 4). The other possi-
bility is to consider differences of energy in the same
particular referential: binding energies of several
defects (divacancies: VO + VO or VO + VU, tetrava-
cancies – denoted 4-vac. in Table 4: 2VO + 2VU) or
migration energies.

Properties of small clusters of defect have also
been evaluated, for which no experimental data
are available for comparison: close Frenkel pairs,
di-interstitials of oxygen, divacancies, trivacancies
and tetravacancies binding energies. In the case of
oxygen Frenkel pairs, we observed that moving a
regular oxygen atom to the closest interstitial site
(center of an oxygen cube) resulted in a direct
recombination of the two defect. Gupta et al. [72]
obtained by ab initio calculation a value of 0.1 eV
for this configuration. Therefore two other situa-
tions were considered:

• The vacancy and the interstitial are separated by
a (lattice) U atom: the vacancy is in � 1

4
;� 1

4
;� 1

4
;

the lattice U atom in 0, 0, 0 and the interstitial in
1
2
; 1

2
; 1

2
. This avoided recombination during

lattice relaxation. This situation is referred as
OFP 1.

• The same situation except that the vacancy is
in � 1

4
;� 1

4
;þ 1

4
. This situation is referred as

OFP 2.

The oxygen Frenkel pair energy at infinite dis-
tance (OFP1) is just the sum of the energies of a
vacancy and an interstitial. Three types of Schottky
defects were also considered (an illustration is pro-
vided in Fig. 2), the uranium vacancy being in 0,
0, 0; the first oxygen vacancy in þ 1

4
;þ 1

4
;þ 1

4
and

the second oxygen vacancy in � 1
4
;� 1

4
;� 1

4
(Sch 1),

in � 1
4
; 1

4
;� 1

4
(Sch 2), in � 1

4
; 1

4
; 1

4
(Sch 3). Divacancies

and tetravacancies were considered as the smallest
possible cluster of vacancies.
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Å
.

c
N

eg
at

iv
e

m
ig

ra
ti

o
n

en
er

gy
.

d
M

in
im

u
m

o
f

en
er

gy
n

o
t

fo
u

n
d

.

K. Govers et al. / Journal of Nuclear Materials 366 (2007) 161–177 169



Fig. 2. Different Schottky configurations envisaged. Dark
spheres are U atoms. O atoms are situated at each gray cube
edge, but not depicted for clarity reasons. The dark square is the
U vacancy, the white square is the first oxygen vacancy, and the
gray square are the different configuration of the second oxygen
vacancy.
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2.3.4. Defect migration energies

Experimental values of oxygen, uranium vacan-
cies and interstitials migration energies – VO, VU,
OI, UI mig – can be found in [61,62,64,65,74–77].
The prediction of migration energies was done by
searching an energy saddle point when an atom
was removed (vacancy migration) or added (intersti-
tial migration). This search can become difficult
when many saddle points are very close to each
other. In such cases a better solution is to impose
the position of the migrating ion, or to sample the
energy when an atom follows a specific migration
path. The first approach has been used in this article
because no migration pathway is imposed or
guessed, even if for that reason there is no guarantee
that the atomic configurations are the same for all
potentials. The migration energy of interstitials
was evaluated using two different initial conditions
(small initial displacement in the h100i and h1 10i
directions for respectively the first and second val-
ues reported in Table 4) using the RFO method in
order to find a saddle point. If these values were
not very close to each other, we deduced that the
saddle point is difficult to search (e.g. many saddle
points and local minima near the configuration)
and no value is then provided in the table. In the
case of vacancy migration this problem did not
appear.
The radii of the two spheres in the Mott–Little-
ton approach were of 9 and 20 Å. A convergence
test was done calculating the same energies with
radii of 14 and 24 Å. A noticeable difference was
only observed for close Frenkel defects. The dis-
tance between the interstitial and the vacancy is in
this case of about 7 Å, which explains that a full
relaxation in a sphere of 9 Å radius is not sufficient.

The calculation results for all potentials can be
found in Table 4, all calculations were performed
with radii of 9 and 20 Å. For close Frenkel pairs,
14 and 24 Å radii were used.

2.3.5. Relaxation volume around defects

We have selected some of these potentials, taken
to be representative of their ‘class’, namely for rigid
ion potentials with formal charges: Arima1 [43],
Karakasidis [23], Lewis_a [12] and Walker [10]; for
rigid ion potentials with non-formal charges: Basak
[42] (charges �1.2 and 2.4e for O and U) and
Morelon [24] (charges � �1.6 and �3.2e); for the
shell–core potentials: Catlow1 [6], Grimes [28],
Jackson1 [14], Jackson2 [14], Lewis_b [12] and
Meis2 [45] potentials.

These potentials were used to determine the
relaxation volume (difference of volume between
the system containing no defect and the system con-
taining one or more defects) around neutral triva-
cancies, oxygen interstitials, vacancies and Frenkel
pairs. It was achieved using periodic boundary con-
ditions and working at zero pressure. The system
consisted into 4 · 4 · 4 primitive unit cells (768
atoms) and defects were created removing and/or
adding atoms manually. Other box sizes have been
considered (2 · 2 · 2; 3 · 3 · 3; 6 · 6 · 6) with one
of the potentials, in order to assess box size influ-
ence on the results. Relaxation volumes were almost
identical.

The minimisation used a conjugate gradient algo-
rithm. Electroneutrality in the box was maintained
by adding a uniform background charge. This uni-
form charge only results in a modification of the
energy of the box without changing the forces due
to the defect and its images. These results can be
found in Table 5. They are compared to volume
changes calculated ab initio by Freyss and Petit
[70] in the Generalized Gradient Approximation
(GGA). As these calculations predicted a metallic
behaviour for UO2, no charged cells could be simu-
lated, even when considering interstitials and vacan-
cies. Ab initio calculations are very time-consuming
and for this reason small unit cells were used



Table 5
Relaxation volume Å3, predicted by different potentials using a box of 4 · 4 · 4 unit cells (768 atoms)

Number of
defects

Potentials

Arima1
[43]

Basak
[42]

Catlow2
[6]

Grimes
[28]

Jackson1
[13]

Jackson2
[13]

Karakasidis
[23]

Lewis_a
[12]

Lewis_b
[12]

Meis2
[45]

Morelon
[24]

Walker
[10]

ab initio
[70]

Oxygen interstitial

1 9.0 16.2 9.8 6.5 5.5 3.3 5.7 5.4 4.8 – 2.4 7.4
2 17.5 32.0 20.4 12.7 10.6 6.3 11.1 10.6 8.8 10.1 4.2 14.4
4 35.2 73.0 40.3 25.2 21.3 12.3 22.4 20.8 – 18.6 8.2 –
6 67.2 115.5 60.7 36.6 33.1 17.8 – 29.3 – 29.0 10.2 –
8 96.2 164.1 81.0 48.2 41.9 24.9 – 37.1 – 39.1 12.9 –
DV =OI 12.0 20.5 10.1 6.0 5.3 3.0 5.6 4.7 4.4 4.9 1.6 7.2 5–1

Oxygen vacancy

1 �1.3 �5.3 �1.6 �1.6 �2.2 �1.6 �0.0 0.0 �0.4 0.1 1.7 �0.3
2 �3.0 �11.2 �3.6 �3.4 �1.8 �3.1 �0.4 �0.4 �1.2 0.0 3.1 �1.1
4 �6.0 �22.5 �7.3 �7.0 �2.8 �4.4 �1.2 �0.9 �3.0 �0.2 6.0 �2.0
6 �10.0 �34.8 �13.7 �12.3 �6.2 �8.3 �2.4 �2.5 �5.7 �2.1 7.8 �3.5
8 �17.3 �49.9 – �17.8 �11.5 �11.8 �7.5 �6.6 �10.1 �4.7 7.3 �8.6
DV =V O �2.1 �6.2 �2.2 �2.2 �1.3 �1.4 �0.8 �0.8 �1.2 �0.6 1.0 �1.0 3–29

Trivacancy

1 8.0 14.0 4.8 �4.4 1.4 �1.9 7.2 6.0 4.7 4.1 5.4 8.4
2 17.5 19.2 10.8 32.2 10.1 4.5 13.4 14.3 10.6 9.4 17.9 19.4
4 42.7 35.7 27.3 2.9 26.8 18.4 41.1 32.8 30.4 31.5 28.9 47.3
DV =Triv: 10.8 8.5 6.9 – 7.1 5.0 10.3 8.3 7.7 8.0 7.5 12.0

Oxygen Frenkel pair

1 8.5 11.3 6.8 5.1 5.3 2.4 6.2 6.2 4.8 5.3 4.8 9.4
2 17.9 23.7 19.3 11.0 10.9 5.5 13.2 12.4 – 11.7 10.0 30.0
DV =OFP 8.9 11.9 9.6 5.5 5.4 2.8 6.6 6.2 4.8 5.9 5.0 15.0

Note: (–) means that this value could not be calculated.
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(1 · 1 · 1 and 1 · 1 · 2 boxes), and only volume
changes associated with vacancies and interstitials
were calculated.
3. Discussion

In this section, we compare the results in Table 4
obtained with the different potentials and we discuss
discrepancies pertaining their range of applicability
in static calculations.
3.1. Cohesive energy

As for the determination of vacancies or intersti-
tials formation energies, the determination of the
cohesive energy of an ionic crystal depends on the
reference energy used (see Section 2.3.3). When
using interatomic potentials with fixed ion charges,
the zero level is obtained when all charged ions
are at infinite distance from each other. Potentials
with non-formal charges will thus not have the same
reference state (e.g. O�1.2 and U2.4 atoms at 1) as
potentials with formal charges (O�2 and U4 at 1).
The electrostatic potential providing about 90% of
the cohesive energy, a large difference is expected
between potentials with non-formal charges and
those with formal charges.
3.2. Elastic properties

It appears that elastic constants (C11, C12, C44, B,
E) at 0 K are generally well reproduced by all poten-
tials. This is not surprising since they are generally
developed by fitting to these values. Even if it was
expected, it confirms that no error was made in
the interpretation of the parameters and their units
reported by the different authors. Indeed in some
articles units were not given [35,43] or were inconsis-
tent [42]. Two potentials (Grimes [28], Morelon [24])
were not based on elastic properties fitting and, in
these cases, the calculation of elastic constants can
be considered as independent estimations. The basis
for development of the Grimes [28] potential were
electron-gas calculations. The Morelon [24] poten-
tial was fitted on the lattice parameter, its evolution
with temperature and in order to reproduce defect



Fig. 3. Interstitialcy mechanism for oxygen atoms. Dark spheres
are U atoms. Regular O atoms are situated at each gray cube
edge, but are not depicted for clarity reasons. The stars indicate
interstitial sites, the white square is an oxygen vacancy, white
spheres are migrating oxygen atoms.
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energies, as mentioned. The results obtained by the
Grimes potential [28] slightly overestimate elastic
properties and by Morelon [24] underestimate them.

Since polarisability is not incorporated in rigid
ion potentials, they will always predict a high-fre-
quency dielectric constant of 1, which is quite far
from the experimental value of 5.3. The main conse-
quence of it appears in the optical phonon modes,
which are thus only accurately described by the
shell–core potentials.

3.3. Defect energies

3.3.1. Formation energies

Globally all potentials give the same trend for all
defect energies. The comparison to experimental
data or to ab initio results is not directly possible
in case of charged defects, as it was argued in
Section 2.3.3. Therefore, only neutral defects, bind-
ing energies and migration energies have been
computed.

Frenkel pair formation energies calculated by
interatomic potentials or ab initio techniques are
generally expressed as the sum of interstitial and
vacancy formation energies and compared to exper-
imental values. From Table 4 it appears that the
oxygen Frenkel pair (OFP) formation energies
calculated using potentials developed only on lattice
properties are slightly higher than the experimental
values. When OFP are calculated as an interstitial
close to a vacancy (close Frenkel pairs), almost all
potential predict an OFP value in the experimental
range, with the exception of Grimes potential which
still slightly overestimates it. This situation should
correspond to what is measured experimentally,
because an atom leaving its regular place will ini-
tially be in its neighborhood. Recent ab initio calcu-
lations by Gupta et al. [72] also provide Frenkel pair
energies at large, medium and small distance.

The same tendency occurs for uranium Frenkel
pairs (UFP) and for Schottky defects. Conclusions
for UFP are more difficult to make because experi-
mental values are thought to underestimate the real
value [24,68]. More confidence can be found in
ab initio results for this type of value.

3.3.2. Migration energies

Two calculations with different initial displace-
ment of the migrating atom were performed in the
case of interstitials. A concordance of the results
indicates that the saddle point is well determined,
while different values indicated a problem in finding
the saddle point: in some cases a negative activation
energy was predicted for a particular initial condi-
tion, which, is due to the attractive form of Bucking-
ham potential at small distances. A visualisation of
the results obtained with the Lewis_b potential
showed that two oxygen atoms have their shell situ-
ated at less than 1 Å form the other’s core and from
each other.

Note that the migration energy calculated with
the second initial condition was nevertheless posi-
tive or could not be found, denoting a problem
for these specific calculations.

An analysis of the saddle point configurations
showed that the predicted mechanism for oxygen
interstitial migration is an interstitialcy mechanism,
as illustrated in Fig. 3. This was observed for most
potentials, with the exception of the problematic
ones above mentioned. The migration of oxygen
vacancies is predicted to consist of oxygen motion
along the h100i direction.

For uranium defects, the situation was more
complicated. A number of potentials (Arima1,
Basak, Busker, Jackson1, Lewis_b, Meis2, Morelon,
Yamada) tend to predict a h100i motion of the
interstitial (see Fig. 4), the Walker potential indi-
cates a h110i motion, while for the other potentials,
the mechanism is not clear. The uranium vacancy



Fig. 5. Willis clusters. Dark spheres are U atoms. Regular O
atoms are situated at each gray cube edge, but are not depicted
for clarity reasons. The stars indicate interstitial sites, white
squares are oxygen vacancies, white spheres are regular oxygen
atoms displaced from their original site, and hashed spheres are
the two oxygen interstitials.

Fig. 4. Uranium interstitial migration mechanism. Dark spheres
are U atoms. Regular O atoms are situated at each gray cube
edge, but are not depicted for clarity reasons. The stars indicate
interstitial sites, the dark square is an uranium vacancy, and the
crossed sphere the uranium interstitial.
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migration is generally predicted to occur in the
h110i direction.
Fig. 6. Di-interstitial cluster predicted by static calculations.
Dark spheres are U atoms. Regular O atoms are situated at each
gray cube edge, but are not depicted for clarity reasons. The stars
indicate interstitial sites, white squares are oxygen vacancies,
white spheres are regular oxygen atoms displaced from their
original site, and hashed spheres are the two oxygen interstitials.
3.3.3. Binding energies

Binding energy calculations allow comparing
clustering predictions with different potentials. It
appears that two oxygen vacancies repel each other,
while the different combinations of oxygen and ura-
nium vacancies (VO + VU; 2VO + VU; 2VO + 2VU)
are bound.

Clusters of two oxygen interstitials experimen-
tally appear under the form of Willis clusters [78].
They consist of two oxygen interstitials displaced
in the h110i direction from the oxygen cube center
and the displacement of two regular oxygen atoms
in the h111i direction. This situation is depicted in
Fig. 5.

Willis clusters were only predicted using energy
minimisation by three potentials: Catlow2, Karak-
asidis and Sindzingre. However, it appeared from
MD simulations of these clusters that the state
found with all potentials was not the most stable
one (this configuration can be seen in Fig. 6). After
reaching the structure predicted with energy minimi-
sation, the thermal motion allowed to go to a deeper
minimum. Its structure for most potentials consisted
of three oxygen interstitials and one oxygen vacancy
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(see Fig. 7). This structure has a positive binding
energy. One important point to note is that in these
simulations oxygen and uranium valences are not
allowed to vary with the environment, which means
that local electroneutrality is not maintained. Cat-
low [6] modelled Willis clusters with modified
uranium charges in order to compensate, at least
partially, the charge of the oxygen interstitials.
These charge modifications with the local environ-
ment can be considered in static calculations but
are actually inapplicable in the course of MD
simulations.

Another problem may occur for the simulation
of oxygen interstitials, as observed by Crocombette
in zirconium orthosilicate [79]. The study of oxygen
interstitials by interatomic potentials and by ab ini-
tio calculations predicted very different behaviours:
the ab initio calculations predicted that an O2 mol-
ecule is formed at a regular oxygen site in the lattice.
This is impossible to simulate with interatomic
potentials as two oxygen will repulse each other
because of their identical charges. This effect has
not been reported for oxygen interstitials in UO2,
but it cannot actually be excluded for clusters of
oxygen interstitials.
Fig. 7. Di-interstitial cluster predicted by MD simulations. Dark
spheres are U atoms. Regular O atoms are situated at each gray
cube edge, but are not depicted for clarity reasons. The stars
indicate interstitial sites, the white square is an oxygen vacancy,
the white spheres is a regular oxygen atom displaced from its
original site, and hashed spheres are the two oxygen interstitials.
3.4. Relaxation volume

Volume changes are reported in Table 5 and
compared to ab initio results obtained with much
smaller boxes. We have to keep in mind that in
ab initio calculations, the sum of all atoms charges
was zero for OI and VO, while in our simulations
the uniform background charge added only modi-
fies the energy reference, not the electrostatic forces
between atoms. The defect interacts with its images
produced by the periodic boundary conditions,
which can affect the results for too small boxes (such
as if the same size as ab initio calculations was used)
or if too many charged defects are present.

The different potentials predict a relaxation
volume associated with oxygen interstitials of 3–
10 Å3, in good agreement with ab initio results, with
the exception of Morelon potential (1.6 Å3), Arima1
(12 Å3) and Basak (20.5 Å3). It is well-known and
long established experimentally [80] that hyperstoi-
chiometric fuel shows a decrease of lattice parame-
ter with departure from stoichiometry. This is in
contradiction with all calculated results that predict
swelling with increased concentration of oxygen
interstitials.

The prediction of swelling due to isolated oxygen
interstitials can be questioned as Willis clusters are
observed experimentally. For this reason we have
computed volume change associated to Willis
clusters with one of the potentials that predicted
their formation: the Catlow2 potential. It is
reported in Table 6. Relaxation volumes are again
positive.

A possible explanation for these unphysical
results may be found in the way electroneutrality
is achieved in MD calculations, adding an uniform
background charge. Another way of maintaining
electroneutrality, but in this case more locally, is
to modify the uranium atoms charge around an
oxygen vacancy, an oxygen interstitial or in the
Table 6
Comparison of the relaxation volume associated with oxygen
interstitials and Willis clusters. Calculations done with Catlow2
potential

Number of OI Uniformly distributed Willis clusters

1 9.8
2 20.4 25.5
4 40.3 49.0
6 60.7 74.7
8 81.0 98.2
DV =OI 10.1 12.3
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Willis cluster structure. An estimation of the relaxa-
tion volume of isolated U3+ (compensating posi-
tively charged defects) and U5+ (compensating
negatively charged defects) has been calculated with
three potentials (Catlow2, Karakasidis and
Lewis_a). The parameters of the O–U interatomic
potential were not modified for these two ions, only
their charge; this approximation is not expected to
have an important influence on the results. The
volume change calculated were �10 Å3 for U3+

and ��10 Å3 for U5+. These results suggest that
the major contribution to the swelling dependence
on stoichiometry may be due to electrons and holes
compensating the charge of a defect, located on ura-
nium atom sites.

This result questions the validity of estimating
the relaxation volume of charged defects if the local
electroneutrality is not maintained.

Oxygen vacancies are predicted to result in a con-
traction of the lattice except for Morelon potential
and for 1 or 2 defects by the Meis2 potential, that
agree with ab initio data. Basak potential, which
gave in the previous calculations good predictions
on elastic and defect data predicts here results about
twice higher than all other potentials. Oxygen Fren-
kel pairs are predicted to have a relaxation volume
of 5–10 Å3 for all potentials.

An interesting prediction of all potentials is that
trivacancies also induce a swelling of the matrix.
The relaxation volume associated to it lies between
5 and 12 Å3.

4. Synthesis

The aim of this study was to assess the range of
applicability of the existing interatomic potentials
developed for the UO2 system. The main concretisa-
tion of this work can be found in Table 4 (compar-
ison of elastic properties and various energies
associated with defects) and in Table 5 (comparison
of volume change associated with trivacancies, oxy-
gen vacancies, oxygen interstitials and oxygen Fren-
kel pairs).

The elastic properties are generally accurately
reproduced, mainly because these values were part
of the fitting parameters used by most of the deve-
lopers of pair potentials. Only one potential [24]
was, intentionally, not fitted to elastic data and
slightly underestimate them. Another potential [28]
was developed on the theoretical basis of electron-
gas calculations. This potential slightly overesti-
mated elastic properties.
With regard to defect formation energies (oxy-
gen, uranium Frenkel pairs; Schottky defects) an
appreciable variation of the energy according to
the envisaged configuration was observed. ‘Close’
configurations of defects were predicted to be more
stable than defects at infinite distance from each
other by 1–2 eV for the oxygen Frenkel pair, 3–
5 eV for the uranium Frenkel pair and 3–6 eV for
the Schottky defect. Depending on the configura-
tion chosen to be compared to experimental data,
most potentials will be considered as ‘applicable’
(close configuration) or ‘rejected’ (large separation
of defects) for the modelling of defects.

The binding energies of clusters were calculated.
Difficulties were encountered for oxygen di-intersti-
tials. Energy minimisation calculations predicted
the (2:2:2) structure of Willis clusters for three
potentials. MD simulations, even at low tempera-
ture, allowed to find a deeper minimum thanks to
thermal motion, whose structure consisted of three
oxygen interstitials and one oxygen vacancy for
most of the potentials. The Yamada potential
predicted a different structure with a small displace-
ment of six regular oxygen atoms around the two
interstitials. These results have to be taken carefully
as no charge compensation by uranium atoms was
used in the Willis cluster structure in order to com-
pensate, even partially, the additional charges of
oxygen interstitials.

The migration energies will play an important
role e.g. for the consideration of defects recombina-
tion. The calculations of these quantities predicted a
different behaviour from one potential to the other
one. The migration of interstitials were in some
cases difficult to search, which is evidenced by differ-
ent migration energies obtained with small pertur-
bations in the initial condition of the saddle-point
search.

Finally, the relaxation volume around the domi-
nant defects of UO2 has been envisaged in this
study, in a first time maintaining electroneutrality
with a uniform background charge, which physi-
cally only results in a modification of the system
energy. Since each type of defect was studied sepa-
rately, these calculations do not really permit to
compare the predictions of the potentials with
experimental values, but they indicate the relative
contribution of each type of defect to the lattice
parameter change. A swelling induced by oxygen
interstitials is predicted by all potentials, while it is
experimentally known that hyperstoichiometry
results in a contraction of the lattice. Therefore we
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also considered Willis clusters in our calculations.
Their positive relaxation volume is also incompati-
ble with a lattice contraction for hyperstoichiomet-
ric fuels.

Electroneutrality was maintained adding an
uniform background charge; but it can also be
maintained more locally by modification of the ura-
nium valence. It seems from our estimations of
relaxation volume around localized electron or
holes (U3+ and U5+) that this type of charge com-
pensation would provide the major contribution to
lattice parameter change, and would explain the
evolution of the lattice parameter with the deviation
from stoichiometry. A second interesting result of
this work is the positive relaxation volume induced
by trivacancies.

Determining from these results a single best, or
most accurate, potential is impossible. Our study
shows that differences appeared when considering
complex situations (migration of defects, clusters).
Moreover, the results indicate that the classes of
potential (shell–core, rigid ion), the type of potential
(Buckingham, Buckingham-4-ranges, Morse), nei-
ther the percentage of ionicity attributed to ions,
but the fitted parameters themselves (and the
observables on which they are fitted) have an impor-
tant influence on the accuracy of the potential.

We might be in a better position to make a selec-
tion of the most accurate potential after full MD
calculations at non-zero temperatures. Hence, the
next steps of this study will concern the evolution
of different quantities (lattice parameter, specific
heat, bulk modulus, etc.) with temperature, pre-
dicted by all these potentials. This will provide use-
ful information to assess the applicability of these
potentials for dynamic events.
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